WP1100 — Radiative Transfer
Past and Future

Franz Schreier, Mayte Vásquez, Thomas Trautmann
Sebastián Gimeno García, Pascal Hedelt

DLR — Remote Sensing Technology Institute
Oberpfaffenhofen, GERMANY

April 2013
Outline

1. Past

2. Future
GARLIC (SQuIRRL) for Venus Transit Spectroscopy

- Transit June 2004
- Vacuum Tower Telescope
- Tenerife
- Emergency call: “We have spectra, but no model”
- ... and SQuIRRL goes to Berlin!

Analysis of CO\textsubscript{2} SWIR region: isotope abundances, field-of-view, tangent altitudes, ...
Line shapes: Voigt, VanVleck\times Doppler, Lorentz
Line data: HITRAN, HITEMP, GEISA, JPL, . . .
Continua: H_2O (CKD), CO_2, N_2, O_2, “dry air” (Liebe)
Geometries: Limb, uplooking, downlooking (refraction optional)
Field-of-view: Box, Gauss, Trapez, . . .
Implementation: FORTRAN 2008, all data read from external files
Verification: AMIL2DA (mid IR, \rightarrow), IRTMW01 (\mu Wave, \rightarrow, \uparrow, \downarrow), . . .
Jacobians: Automatic differentiation
Extensions: (multiple) scattering infrared radiative transfer: M. Vasquez: cloudy planetary atmospheres
GARLIC — Generic Atmospheric Radiation Lbl Infrared Code

Line shapes: Voigt, VanVleck\texttimes Doppler, Lorentz
Line data: HITRAN, HITEMP, GEISA, JPL, \ldots
Continua: H$_2$O (CKD), CO$_2$, N$_2$, O$_2$, “dry air” (Liebe)
Geometries: Limb, uplooking, downlooking (refraction optional)
Instruments: Spectral response: FTS, Heterodyne, Fabry–Perot, \ldots
Field-of-view: Box, Gauss, Trapez, \ldots
Implementation: FORTRAN 2008, \textit{all data read from external files}
Verification: AMIL2DA (mid IR, \rightarrow), IRTMW01 (\mu Wave, \rightarrow, \uparrow, \downarrow), \ldots
Jacobians: Automatic differentiation
Extensions: (multiple) scattering infrared radiative transfer:
M. Vasquez: cloudy planetary atmospheres
GARLIC — Recent Advances

- **SQuIRRL – R.I.P.**
- **Fortran 90 re-implementation of SQuIRRL**
 - dynamic array allocations
 - easier to maintain: structures
- **lbl — optimized ∀ IR**
 - Humlicek-Weideman Voigt
 - “multi” grid cross sections
 - multi-threading — OpenMP
- **CIA collision-induced absorption**
- **Weighting functions**
- **Background sources: more flexible**
GARLIC — Recent Advances

- **SQuIRRL – R.I.P.**
- Fortran 90 re-implementation of SQuIRRL
 - dynamic array allocations
 - easier to maintain: structures
- **lbl — optimized \(\forall \) IR
 - Humlicek-Weideman Voigt
 - “multi” grid cross sections
 - multi-threading — OpenMP
- CIA collision-induced absorption
- Weighting functions
- Background sources: more flexible

ARTS — GARLIC — KOPRA:
- 42 “Garand” atmospheres,
- 19 HIRS channels

![Graphs showing temperature changes](image)
GARLIC — Recent Advances

- SQuIRRL – R.I.P.
- Fortran 90 re-implementation of SQuIRRL
 - dynamic array allocations
 - easier to maintain: structures
- lbl — optimized ∀ IR
 - Humlicek-Weideman Voigt
 - “multi” grid cross sections
 - multi-threading — OpenMP
- CIA collision-induced absorption
- Weighting functions
- Background sources: more flexible

Outlook:
- Continua: MT-CKD
- FPGA
- 2D/3D atmospheres
- Collisional narrowing: Rautian, Galatry, …
- Line mixing
- non-LTE
Where are we?

Oberpfaffenhofen

PhD Thesis

Radiative transfer in cloudy planet atmospheres

SORTRA = GARLIC + DISORT

- SCIA–Venus observations & modeling:
 Adv. Space Research 2013

- Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars
 Input: “Kitzmann atmospheres”

1. Clear-sky thermal emission spectra and weighting functions
 Astronomy & Astrophysics 2013

2. Thermal emission spectra influenced by clouds
 A&A, hopefully accepted soon!
FGKM Star Planets: Weighting Functions
FGKM Star Planets: Lbl vs. Correlated-k

Remote Sensing Technology Institute

WP1100 - Radiative Transfer
Some studies with.lbl infrared simulations:

- P. Hedelt: Venus transit observations 2004
- P. von Paris et al.: Warming the early Earth – CO2 reconsidered
- P. von Paris et al.: Spectroscopic characterization of the atmospheres of potentially habitable planets: GL 581 d as a model case study
- L. Grenfell et al.: Sensitivity of biomarkers to changes in chemical emissions in the Earth’s Proterozoic atmosphere
- P. Hedelt et al.: Spectral features of Earth-like planets and their detectability at different orbital distances around F, G, K stars
- P. von Paris et al.: Characterization of potentially habitable planets: Retrieval of atmospheric and planetary properties from emission spectra
Outline

1. Past
2. Future
“Near-term” — “simple” extension of Mayte’s work:
- NIR transmission/reflection of cloud covered exoplanets
- Multiple cloud layers
- CO$_2$ ice clouds
- Gliese 581 d: impact of clouds?
- Fluxes: plane-parallel approximation vs. full spherical
- Clouds: ‘simple” vs. multiple scattering
What’s next???

HGF Alliance “Planetary Evolution and Life” 2008–2013

“Near-term” — “simple” extension of Mayte’s work:
- NIR transmission/reflection of cloud covered exoplanets
- Multiple cloud layers
- \(\text{CO}_2 \) ice clouds
- Gliese 581 d: impact of clouds?
- Fluxes: plane-parallel approximation vs. full spherical
- Clouds: ‘simple” vs. multiple scattering

“Long-term” — remote sensing
- Temperature sounding and weighting functions:
 (impact of (unknown) \(\text{CO}_2 \) concentration and surface pressure)
- Retrieval feasibility studies (cf. PvP A&A 2013)
- Analysis of real observations (e.g., hot Jupiters and Neptunes)
-

...and our neighbors?
- Venus transit 2012?
- Venus, Mars Express?
Schwarzschild equation (negl. background, clouds, instrument, ...)
Retrieval Methodology

Schwarzschild equation (negl. background, clouds, instrument, . . .)

\[l(\nu) = \int_0^{\infty} \text{d}z \ B(\nu, T(z)) \ \frac{\partial}{\partial z} \exp \left(- \int_0^z \text{d}z' \sum_m k_m(\nu; p(z'), T(z')) n_m(z') \right) \]

\[\partial T(\nu;z)/\partial z \]

Discretization:

- finite number \(m \) of observations: measurement vector \(y \)
- quadrature points or expansion coefficients or . . . : state vector \(x \)

Nonlinear least squares problem

\[\min_x \| l_{\text{obs}} - l_{\text{mod}}(x) \|^2 \]
Regularization

- Discretization of radiative transfer integral equation

\[\text{Least squares problem} \quad \min_x \| F(x) - y \|^2 \]

- Ill posed problem
 - Data cannot provide sufficient information
 - Extremely strong sensitivity of solution to perturbations of data
 \[\text{Need additional information about the solution} \]

- Generalization of the minimization problem
 - Optimal estimation (Rodgers 1976):
 Statistically combine \textit{a priori} and retrieved profile

\[\min_x \left((F(x) - y)^T S_y^{-1} (F(x) - y) + (x - x_a)^T S_a^{-1} (x - x_a) \right) \]

- Tikhonov regularization (1963):
 Introduce \textit{smoothness} conditions on profile

\[\min_x \left(\| F(x) - y \|^2 + \lambda^2 \| Lx \|^2 \right) \]

- Fit of parameterized function (e.g. column density fit)
 \[\text{reduced number of unknowns} \]
Regularization

- Discretization of radiative transfer integral equation

 Least squares problem: \(\min_x \| F(x) - y \|^2 \)

- Ill posed problem
 - Data cannot provide sufficient information
 - Extremely strong sensitivity of solution to perturbations of data

 Need additional information about the solution

- Generalization of the minimization problem
 - Optimal estimation (Rodgers 1976):
 Statistically combine \textit{a priori} and retrieved profile

 \[
 \min_x \left((F(x) - y)^T S_y^{-1} (F(x) - y) + (x - x_a)^T S_a^{-1} (x - x_a) \right)
 \]

 - Tikhonov regularization (1963):
 Introduce 'smoothness' conditions on profile

 \[
 \min_x \left(\| F(x) - y \|^2 + \lambda^2 \| Lx \|^2 \right)
 \]

 - Fit of parameterized function (e.g. column density fit)

 \(\implies \) reduced number of unknowns
Regularization

- Discretization of radiative transfer integral equation
 Least squares problem: \[\min_x \| F(x) - y \|^2 \]

- Ill-posed problem
 - Data cannot provide sufficient information
 - Extremely strong sensitivity of solution to perturbations of data

 \[\rightarrow \text{Need additional information about the solution} \]

- Generalization of the minimization problem
 - Optimal estimation (Rodgers 1976):
 Statistically combine *a priori* and retrieved profile

 ?? a priori for exo-planets ??

- Tikhonov regularization (1963):
 Introduce *smoothness* conditions on profile
 \[\min_x (\| F(x) - y \|^2 + \lambda^2 \| Lx \|^2) \]

 - Fit of parameterized function (e.g. column density fit)

 \[\rightarrow \text{reduced number of unknowns} \]
GARLIC and Atmospheric Inverse Problems

- **BIRRA** Beer InfraRed Retrieval Algorithm
 column density nonlinear least squares for nadir nir (SCIAMACHY)
GARLIC and Atmospheric Inverse Problems

- **BIRRA** Beer InfraRed Retrieval Algorithm
column density nonlinear least squares for nadir nir (SCIAMACHY)

- **CERVISA**
Column EstimatoR Vertical Ir Sounding Atmosphere
column density nonlinear least squares for nadir tir (AIRS, IASI, ...)

![Graphs showing VCD variations over time]

- **AIRX2RET**
- **0.8 * AIRS - cervisa**
- **1.4 * SCIA - birra**
- **1.4 * <SCIA - birra>**

Remote Sensing Technology Institute

WP1100 - Radiative Transfer
GARLIC and Atmospheric Inverse Problems

- **BIRRA** Beer InfraRed Retrieval Algorithm
 column density nonlinear least squares for nadir nir (SCIAMACHY)

- **CERVISA**
 Column EstimatoR Vertical Ir Sounding Atmosphere
 column density nonlinear least squares for nadir tir (AIRS, IASI, . . .)

- **VINO** Versatile Inversion for Nadir Observations
 GARLIC + DRACULA for nadir sounding profiles (IASI, GOSAT)

A. Doicu, M. Hess, M. Szopa
GARLIC and Atmospheric Inverse Problems

- **BIRRA** Beer InfrRed Retrieval Algorithm
 column density nonlinear least squares for nadir nir (SCIAMACHY)

- **CERVISA**
 Column EstimatoR Vertical Ir Sounding Atmosphere
 column density nonlinear least squares for nadir tir (AIRS, IASI, . . .)

- **VINO** Versatile Inversion for Nadir Observations
 GARLIC + DRACULA for nadir sounding profiles (IASI, GOSAT)

- **PILS** Profile Inversion for Limb Sounding
 TELIS — TeraHertz Limb Sounder

Jian Xu

Remote Sensing Technology Institute
Exoplanets Retrievals — Additional Challenges

<table>
<thead>
<tr>
<th>Earth</th>
<th>Exoplanets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatologies etc. for initial guess and/or a priori</td>
<td>no climatologies! unknown constituents?</td>
</tr>
<tr>
<td></td>
<td>atmos model → init guess?</td>
</tr>
</tbody>
</table>
Exoplanets Retrievals — Additional Challenges

<table>
<thead>
<tr>
<th>Earth</th>
<th>Exoplanets</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Climatologies etc. for initial guess and/or a priori</td>
<td>- no climatologies! unknown constituents? atmos model → init guess?</td>
</tr>
<tr>
<td>- Local view (1D atmosphere sufficient)</td>
<td>- Global view: disk-averaged spectrum</td>
</tr>
</tbody>
</table>
Earth
- Climatologies etc. for initial guess and/or a priori
- Local view
 (1D atmosphere sufficient)
- Spectral range, resolution, noise “problem specific”

Exoplanets
- no climatologies!
- unknown constituents?
- atmos model \(\rightarrow\) init guess?
- Global view:
 disk-averaged spectrum
- “Sub-optimal” spec range, low resolution, high noise
Earth
- Climatologies etc. for initial guess and/or a priori
- Local view
 - (1D atmosphere sufficient)
- Spectral range, resolution, noise “problem specific”
- Observations repeatable

Exoplanets
- no climatologies!
- unknown constituents?
- atmos model → init guess?
- Global view:
 - disk-averaged spectrum
- “Sub-optimal” spec range, low resolution, high noise
- A single observation?
Exoplanets Retrievals — Additional Challenges

<table>
<thead>
<tr>
<th>Earth</th>
<th>Exoplanets</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Climatologies etc. for initial guess and/or a priori</td>
<td>• no climatologies! unknown constituents? atmos model → init guess?</td>
</tr>
<tr>
<td>• Local view</td>
<td>• Global view: disk-averaged spectrum</td>
</tr>
<tr>
<td>(1D atmosphere sufficient)</td>
<td>• “Sub-optimal” spec range, low resolution, high noise</td>
</tr>
<tr>
<td>• Spectral range, resolution, noise “problem specific”</td>
<td>• A single observation?</td>
</tr>
<tr>
<td>• Observations repeatable</td>
<td>• Validation ???</td>
</tr>
<tr>
<td>• “Easy” verification & validation</td>
<td></td>
</tr>
</tbody>
</table>
Exoplanets Retrievals — Additional Challenges

<table>
<thead>
<tr>
<th>Earth</th>
<th>Exoplanets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatologies etc. for initial guess and/or a priori</td>
<td>no climatologies! unknown constituents? atmos model → init guess?</td>
</tr>
<tr>
<td>Local view</td>
<td>Global view: disk-averaged spectrum</td>
</tr>
<tr>
<td>(1D atmosphere sufficient)</td>
<td>“Sub-optimal” spec range, low resolution, high noise</td>
</tr>
<tr>
<td>Spectral range, resolution, noise “problem specific”</td>
<td>A single observation?</td>
</tr>
<tr>
<td>Observations repeatable</td>
<td>Validation ???</td>
</tr>
<tr>
<td>“Easy” verification & validation</td>
<td>Everything unknown</td>
</tr>
<tr>
<td>Everything known (almost)</td>
<td></td>
</tr>
</tbody>
</table>
Exoplanets Retrievals — Workpackages

- Set-up state vector
 - Select parameters to retrieve
 - Appropriate discretization

- Analyze conditioning, correlations, ...
 Information content (weighting fct., PCA, SVD, ...)

- Constraints
 - Smoothness, positivity, ...
 - “Physical” constraints

- Implementation
 - Derivative code
 - Inverse problem solver

- Earth-shine, Mars, Venus, Titan, ... for verification & validation

- Analyse exoplanet spectra
 (and observation, reduction, calibration ...)

Remote Sensing Technology Institute
calculated standard-atmospheres of exoplanets orbiting different stars;

- my calculations are based on the **G-Star** and **M-Star** due to their controversial lapse rates above $10^2 [mb]$

- the points connected by the straight lines define the **coarse** $(NZ=3)$ **vertical temperature profile** as given to the input-file

Abbildung: Temperature profiles of exoplanet atmospheres [3]
The table shows the correlation coefficient K for each combination of columns of the jacobian;

<p>| Correlationmatrix for atm. parameters of G-Star-Planet |
|----------------------------------|--|--|--|--|--|--|--|</p>
<table>
<thead>
<tr>
<th>Relate</th>
<th>CO2</th>
<th>T_{surface}</th>
<th>$T_{\text{tropopause}}$</th>
<th>$T_{\text{stratopause}}$</th>
<th>H$_2$O</th>
<th>O$_3$</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>1.0000e+00</td>
<td>-1.54e-01</td>
<td>-4.32e-01</td>
<td>2.88e-02</td>
<td>1.04e-01</td>
<td>1.64e-02</td>
<td>-6.34e-01</td>
</tr>
<tr>
<td>T_{surface}</td>
<td>-</td>
<td>1.0000e+00</td>
<td>-1.46e-01</td>
<td>-5.06e-01</td>
<td>9.16e-01</td>
<td>-2.27e-01</td>
<td>5.58e-01</td>
</tr>
<tr>
<td>$T_{\text{tropopause}}$</td>
<td>-</td>
<td>-</td>
<td>1.0000e+00</td>
<td>5.39e-01</td>
<td>-1.33e-01</td>
<td>-1.43e-01</td>
<td>1.20e-01</td>
</tr>
<tr>
<td>$T_{\text{stratopause}}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0000e+00</td>
<td>-3.96e-01</td>
<td>8.93e-02</td>
<td>-3.00e-01</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0000e+00</td>
<td>-2.39e-01</td>
<td>4.06e-01</td>
</tr>
<tr>
<td>O$_3$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0000e+00</td>
<td>4.41e-01</td>
</tr>
<tr>
<td>pressure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0000e+00</td>
</tr>
</tbody>
</table>

green cells indicate $|K| \geq 0.5$;

<p>| Correlationmatrix for atm. parameters of M-Star-Planets |
|----------------------------------|--|--|--|--|--|--|--|</p>
<table>
<thead>
<tr>
<th>Relate</th>
<th>CO2</th>
<th>T_{surface}</th>
<th>$T_{\text{tropopause}}$</th>
<th>$T_{\text{stratopause}}$</th>
<th>H$_2$O</th>
<th>O$_3$</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>1.0000e+00</td>
<td>3.71e-01</td>
<td>-7.17e-01</td>
<td>-4.34e-01</td>
<td>-3.49e-01</td>
<td>-6.23e-02</td>
<td>3.14e-01</td>
</tr>
<tr>
<td>T_{surface}</td>
<td>-</td>
<td>1.0000e+00</td>
<td>-6.09e-01</td>
<td>-6.85e-01</td>
<td>-9.50e-01</td>
<td>8.01e-02</td>
<td>-4.58e-01</td>
</tr>
<tr>
<td>$T_{\text{tropopause}}$</td>
<td>-</td>
<td>-</td>
<td>1.0000e+00</td>
<td>6.55e-01</td>
<td>4.55e-01</td>
<td>5.48e-02</td>
<td>-5.10e-02</td>
</tr>
<tr>
<td>$T_{\text{stratopause}}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0000e+00</td>
<td>5.03e-01</td>
<td>-1.43e-01</td>
<td>4.71e-02</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0000e+00</td>
<td>-8.9930e-02</td>
<td>4.92e-01</td>
</tr>
<tr>
<td>O$_3$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0000e+00</td>
<td>5.73e-01</td>
</tr>
<tr>
<td>pressure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0000e+00</td>
</tr>
</tbody>
</table>
Summary

Looking back — forward modeling

- SQuIRRL \(\rightarrow\) GARLIC
 faster, more flexible, \ldots
- SQuIRRL in Berlin:
 exoplanets (and young Earth)
 spectral signatures
- SORTRA:
 - Ibl with multiple scattering
 - Validation: Venus SCIA
 - FGKM planets: clear + cloudy

Looking forward — inversion

Feasibility:
- information content analysis
- "optimized" state vector
Constraints:
- atmos. modeling?
- Solver: Least squares?
 \ldots and cloud studies \ldots
Summary

Looking back — forward modeling

- SQuIRRL → GARLIC
 faster, more flexible, . . .
- SQuIRRL in Berlin:
 exoplanets (and young Earth) spectral signatures
- SORTRA:
 - lbl with multiple scattering
 - Validation: Venus SCIA
 - FGKM planets: clear + cloudy

Looking forward — inversion

- Feasibility:
 information content analysis
 → “optimized” state vector
- Constraints:
 atmos. modeling ?
- Solver: Least squares ?
 . . . and cloud studies . . .
Where are we now . . . and where to go?

Now: First Steps
- Berlin:
 Nonlinear least squares (LM)
- OP:
 Long expertise @ Earth
 \(\mu \)Wave – IR – UV
 First studies: correlation

Soon: Science and Tools
A Versatile Retrieval System
- constrained least squares etc.
- forward model (incl. deriv):
 - molecules – lbl
 - clouds – scattering
- transmission & emission
 SWIR & TIR

Collaborations
- WP1200 — 1D atmosphere modelling
- WP1300 — 3D atmosphere modelling
 (and retrieval @ MPS)